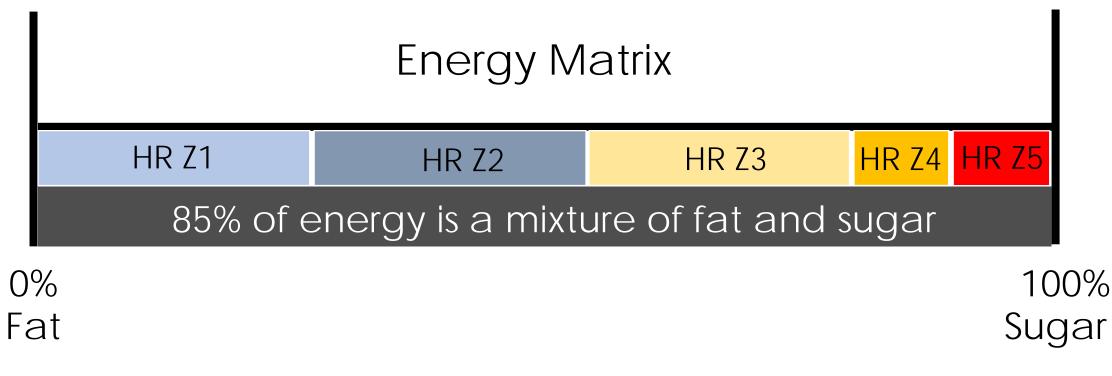


FUELING PERFORMANCE NUTRITION FOR ATHLETES


ENDURANCE SPEED HYDRATION PERFORMANCE STRENGTH RECOVERY

Visit us at www.CoachRobb.com

"I am sleeping like a baby 2nd day in a row, something that I wasn't able to do in months, if not years even though I have tried everything. All it took was an avocado, two strips of bacon, and a spoonful of coconut oil before going to bed. THANK YOU!!"

- Gphilip

Source of Calories – Intensity Derived

Protein Equals 15% Total Energy

Heart Rate Spreadsheet

Heart Rate Zone Calculators															
Run					Concept 2					Bicycle					
	Enter Test Date ->	5/16/2018				Enter Test Date ->	5/16/2018					Enter Test Date ->	5/16/2018		
	Maximum Heart Rate ->	180			Ma	aximum Heart Rate ->	185				Ma	ximum Heart Rate ->	170		
Resting Heart Rate -> 56		56			Resting Heart Rate ->		56				Resting Heart Rate ->		56		
Heart Rate Reserve		124			Heart Rate Reserve		129				Heart Rate Reserve		114		
Zones	Objective	% Of HRR	Low	High	Zones	Object ive	% Of HRR	Low	High	Zo	ones	Objective	% Of HRR	Low	High
Z1	Recovery	55 - 64	122	137	Z1	Recovery		125	141		Z1	Recovery	55 -64	117	131
Z2	Aerobic Foundation	65 - 74	135	150	Z2	Aerobic Foundation	65 - 74	138	153		Z2	Aerobic Foundation	65 - 74	128	142
Z3	Intensive Endurance	75 - 84	147	162	Z3	Intensive Endurance	75 - 84	151	166		Z3	Intensive Endurance	75 - 84	140	154
Z4	Anerobic Threshold	85 - 92	159	172	Z4	Anerobic Threshold	85 - 92	164	177		Z4	Anerobic Threshold	85 - 92	151	163
Z 5	Lactate Tolerance	93 - 98	169	180	Z5	Lactate Tolerance	93 - 98	174	184		Z5	Lactate Tolerance	93 - 98	160	170


Inverse relationship between intensity and food complexity

The Inverse Relationship Between Volume & Intensity

Why Fuel for Performance?


- 98% of molecules in body are replaced annually
- Blood, muscle proteins, tendons & ligaments are completed replaced every six months
- Improve Body Composition
 - Lean muscle tissue for efficiency
 - Muscular endurance
 - Keep core body temperature down
 - Volume of oxygen uptake (VO2 max)
 - Strength to weight ratios
- Improve Immune System
- Create Durability

Nutritional Periodization

- Pre-Season
 - Maximum strength & aerobic enhancement
- Pre-Competitive
 - Strength
 - Aerobic
 - Speed Work
- Competitive
 - Maintain strength, aerobic engine and ability to recover from speed work & racing

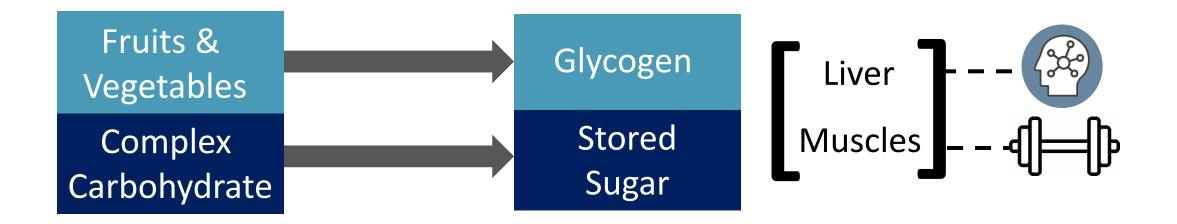
WEEK	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY	
2	Rest Day	Wts. Anatomical Adaptation Run: 1 Hour Even Tempo	Swim: 2700 Yards Bike: 90' Even Tempo w/ Standing Accelerations	Wts. Anatomical Adaptation Run: ½ Mile Intervals	Swim: 2500 Yards Bike: 90' Even Tempo w/ Standing Accelerations	Run: 6 Miles/Hilly Wts. Anatomical Adaptation	Bike: 2 Hours Fragmented Swim: 1800 Yards	

Importance of Water in the Body

- Body has 96 pints of water
 - 64 pints inside cells
 - 32 pints in blood lymphatic & digestive system
 - Brain is 75% water
 - Muscle is 70% water
 - Blood is 85% water
 - Body fat is 10% water
 - Bone is 20-30% water

Optimum Hydration for Health & Wellness

- Basal metabolic needs
- Consume half your body weight in ounces of water over an 8-10 hour period
 - For example: 100 lb person needs 50 ounces of water
 - Consuming raw fruits and vegetables "prehydrates" the body
- Evening weight should be 2-3 lbs heavier than morning weight


Optimum Hydration for Performance

- Sweat Rate & Replenishment Strategies
- Calculate sweat rate associated with performance
 - Beginning weight
 - Ending weight
 - Ounces of fluid consumed
 - Temperature
 - Humidity
 - Duration
 - Max and average heart rate
- Ideal loss rate between 1-2%
 - Lose > 2% and you are dehydrated
 - Lose < 1% and you are overhydrated

The liver feeds the brain and the muscles feed any activity!

- Daily metabolic needs
- Sports performance needs
- Daily Diet The Key To Optimized Performance
 - Non-Athlete: 100-120 mmol/kg
 - Athlete: 170-200 mmol/kg
 - Muscle glycogen vs. blood glucose
 - Phospsohorylation
 - Glycogen synthesis
 - Exhausted glycogen storage leads to OTS and muscle catabolism
 - Reduced glycogen storages

- Morning exercise 8-10 hour "fast"
- Top off sugar levels for optimum performance
- 3 hours before exercise 100 grams (Energy Fuel)
- Consume 70-90 grams 10-15 minutes prior to exercise

Carbs – During Exercise

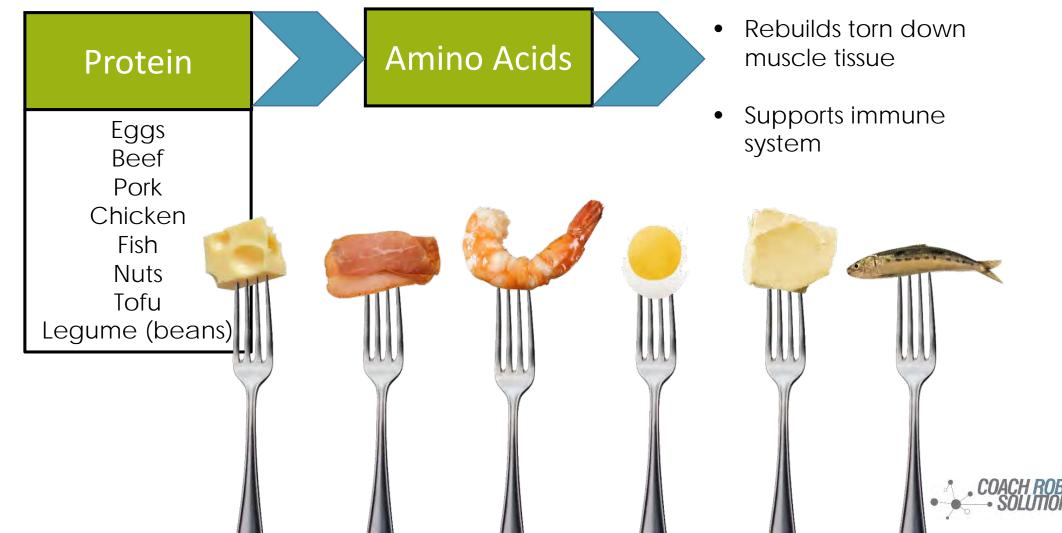
- No carbs necessary during first 60-80 minutes
- Muscle glycogen vs. blood glucose
- Consume 60-75 grams per hour of exercise
 - 4 calories to a gram of carb = 240 or 300 per hour

- Achieve the highest level of muscle glycogen between training sessions
- Recovery begins as soon as cool down is complete
- Simple sugar is key consume 200-225 grams within 10-15 minutes post exercise
- Be careful not to be a calculator athlete biofeedback
- Rehydrate the body

8 Rules of Carbohydrate Planning for Optimum Performance

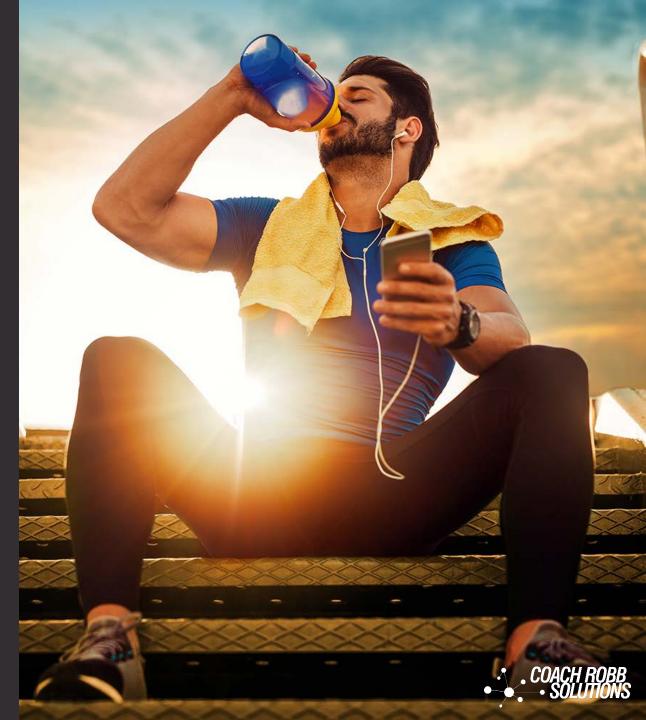
- 1. Consume 100 grams of complex carbs 3 hours prior to key workouts and racing
- 2. Consume complex carbs (fruits & vegetables) at every snack & meal every 2 hours
- 3. Combine foods at every snack and meal to keep an insulin spike to a minimum
- 4. Consume enough carbs daily to avoid muscle cannibalization and stressed adrenals
- 5. Adjust your carbohydrate complexity according to your intensity and duration levels
- 6. Use a sports drink with 6-7% carbohydrate concentration rate
- During exercise, consume 250-300 calories per hour / 60-75 grams of easily digestible carbs (Energy Fuel)
- 8. Post exercise, consume 100-225 grams within 15-20 minutes of completing a workout/race

Carbo Loading...a dangerous lie

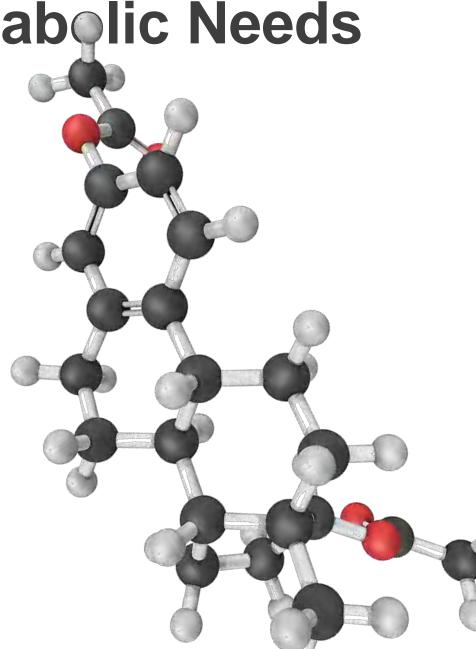

- Conversion of complex carbs to stored sugar to glycogen
- Water retention is part of the conversion process
- Anything above your normal eating to fluid intake changes biomechanics
- Carbohydrate furnace is ignited excessive eating
- Load correctly everyday!

What is the role of Protein?

- Daily metabolic needs
 - Rebuild muscle
 - Support your immune system
 - Hemoglobin is made from protein
 - Enzymes all bodily functions
- Sports performance needs
 - New muscle growth is about 1 ounce per day – 23 pounds a year


- The Key To Optimized Performance
 - Building muscle is not controlled by protein intake
 - Body weight divided by 2 x 1.7 = grams of protein per day
 - Too little protein
 - o Reduced muscle mass
 - o Reduce strength levels
 - o Sick more than four times a year

- Pre-Exercise
 - Prevent muscle protein breakdown
 during training
 - Better adaptation to training long term
 - Amino acids conversion to glucose
- Post-Exercise
 - Support immune system
 - Rebuild stressed muscles, tendons and ligaments
 - High load levels for muscle repair 3:1 ratio carb to protein
 - Long endurance sessions 4:1 ratio carb to protein



- Anti-inflammatory
- Maintains healthy skin and hair
- Helps healing of wounds
- Maintains proper nerve function
- Helps fuel workouts
- Essential for production of all hormones
- Essential for overall health and wellness

Fat Intake – Daily Metabolic Needs

- Production of hormones for health & performance
 - Adrenals regulates electrolytes and facilitates fat and sugar conversion to energy
 - Thymus gland regulates immunity
 - Thyroid regulates temperature, weight & metabolic functions
 - Kidney hormones regulates blood pressure & circulation
- Protects vital organs
- Supports immune system

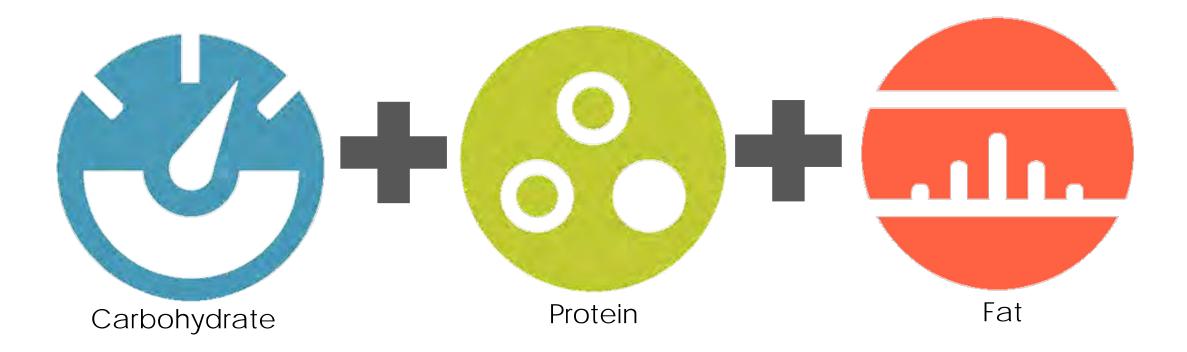
Fat Intake – Sports Performance

- Too much fat
 - Heavy
 - Retains heat
 - Less water for cooling (muscle is 75% water, fat 50% water)
- Too little fat
 - Nervous
 - Poor brain function foggy brain
 - Adrenal fatigue

Fat Intake – Daily Diet

- The Key To Optimized Performance
 - MCT Fats fat burning increased; protein oxidation reduced
 - Easier fat to "burn" vs. saturated fat
 - Sources:
 - o Extra virgin olive oil (EVO)
 - o Raw nuts
 - o Coconut
 - o Cheese
 - o Butter
 - o Whole milk
 - o Greek yogurt

How Do I Know I'm Getting Enough Fat?


- Body composition
- Performance results
- Sleep
- Hunger levels
- Signs of adrenal fatigue
 - Night sweats
 - Inability to sleep
 - Low libido
 - Craving simple sugars

- Low Sex Drive
- Craving Simple
 Sugars

What Should I Eat ?

Raw, real food every two hours!

Vitamins & Minerals

- Natural Antioxidants
 - Catalyst for Energy
 - Micronutrients are the glue

Are Supplements Necessary?

- Self evaluation
 - Food choices?
 - Energy levels?
 - Mental clarity?
 - Residual fatigue by end of week?
- Full blood panel
- Defines deficiencies in vitamins and minerals
- Optimized supplement absorption

Developing the Optimum Performance Nutrition Program

- Food timing
- Food choices
- Food quantities
- Exercise
 - Exercise intensity and duration
- Conditions
 - Heat and humidity (temperature silos)
- Sweat Rate
- Performance Outcomes

Developing the Optimum Hydration Program

- Pre-exercise / Basal Metabolic Needs
 - Pre-hydration through fruits and vegetables
- During exercise
 - Sweat rate calculator
- Post exercise
 - Glycogen synthase enzyme
 - Amino acids

Electrolytes


- Absorption of fluids
 - Osmolity in the stomach
 - Carbohydrate concentration rate
- Necessary for muscle contraction
 - Sodium/potassium ratios
 - Cramping

Role of Electrolytes As a Mineral

- Sodium nerve function, muscle contraction, maintain fluid levels
 - Fruit cantaloupe & avocado
 - Vegetables sundried tomatoes, bell peppers & sweet potatoes
- Potassium regulates heart, sodium potassium pump associated with muscle contraction
 - Fruit bananas & kiwis
 - Vegetables sweet potatoes & mushrooms
- Magnesium muscle and nerve functions, supports immune system
 - Fruits bananas & avocados
 - Vegetables kale & spinach
- Calcium growth of bones and nerve conduction, secretion of hormones & enzymes
 - Fruit plums, kiwi, pears, tangerines & oranges
 - Vegetables okra & broccoli

Cramping Causes & Cures

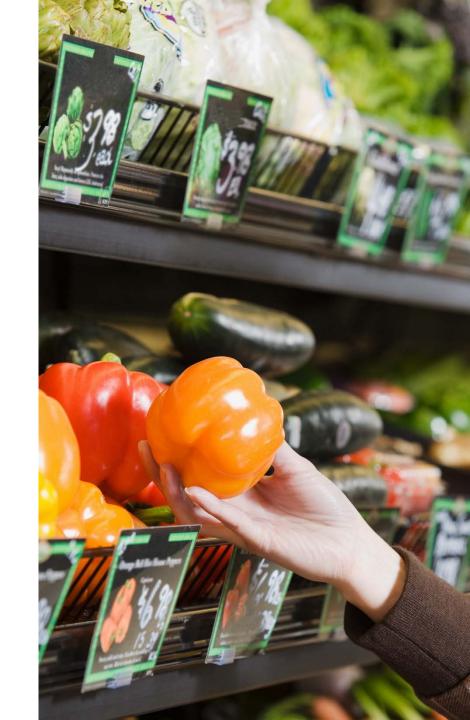
- Not maintaining daily hydration needs
- Not consuming enough fruits and vegetables
- Excessive sweating and chronic dehydration
- Electrolyte depletion
- Insufficient fluid and electrolyte intake during exercise
- Training and racing in non-familiar conditions (heat & humidity)

Intensity & Food Complexity

- Pre-training or racing calorie intake needs to be optimized
- Carbohydrate concentration rate needs to be optimized
- The higher the intensity, the more simplistic the food needs to be
- Recovery calories need to be consumed within 15-20 minutes of training or racing

The Goals of Optimum Recovery

- Build muscle strengthen tendons and ligaments
- Release of Human Growth Hormone (hGh) increase strength to weight ratios (VO2)
- Release of testosterone
- Create an environment of anabolic muscle growth (versus catabolic tear down)
- Support the adrenal system (para-sympathetic)
- Support immune system
- Consume enough protein and fat before bed
 - o Satisfy appetite
 - o Improve sleep quality


The Importance of Sleep

- Our bodies need 8 hours of sleep
- 2-hour nap is beneficial
- Rejuvenate mentally (REM 1)
- Rejuvenate physically (REM 3)
- Sleep cycles 1-4 / hGH
- Sleep cycles 5-6 / Testosterone
- Ability to absorb exercise

Top 10 Shopping Rules for Optimum Performance

- 1. Eat high protein & fat snack prior to shopping
- 2. Only purchase what is on your shopping list
- 3. Shop 2-3 times a week to ensure fresh fruits and vegetables
- 4. Shop solo
- 5. Shop the perimeter of the store
- 6. Purchase more than you need, especially fruits and vegetables
- 7. Use a shopping cart versus a basket
- 8. Labels should only contain 1 ingredient
- 9. Eat only what you can pronounce
- 10. Update your shopping list

Reading Labels to Avoid GI Distress

- Hidden sugars (-OSE)
- Preservatives
- Artificial colors
- Pseudo foods and fillers

To Naturally Build Elite Level Performance

QUESTIONS & ANSWERS

ENDURANCE SPEED HYDRATION PERFORMANCE STRENGTH RECOVERY

Visit us at www.CoachRobb.com